

Update on CargoVibes WP1

James Woodcock

Overview of presentation

Aims and objectives of the CargoVibes project

Assessment of response: Annoyance

Assessment of response: Sleep disturbance

Good practice guide

Introduction

- Projected increase in market share of goods traffic on rail from 8% in 2001 to 15% in 2020
- Implies an increase in noise and vibration exposure for residents in the vicinity of freight lines
- Noise and vibration are key obstacles for this proposed increase
- There is a need for clear methods to assess the human
 response to noise and vibration

 Acoustics Research Centre University of Salford

Aim of CargoVibes

Development and validation of measures to ensure acceptable levels of vibration for residents living in the vicinity of freight railway lines.

CargoVibes WP1

- Aims to establish acceptable levels of vibration from rail transportation
 - Socio-vibration surveys (Netherlands and Poland)
 - Meta-analysis of existing data
 - Laboratory based sleep studies
 - Development of a good practice guide

Meta-analysis on available field studies (N=4490)

s Research Centre of Salford

Original vibration metrics used in each study

Study	Metric	Unit	Time	Weighting	Direction
Germany	KB; VCKBL25	-	0.125s	DIN 4150	Vertical
Norway	V _{w95}	mm/s	1s	NS 8176 /ISO W _m	Vertical dominant
Japan	L _{Vmax}	dB re 10 ⁻⁵ m/s ²	0.63s	JIS C1510	Vertical
USA/Canada	Passby maximum velocity (μ+2σ)	dB re 1μin/s	1s	-	Vertical
UK	Passby RMS; 24 hr VDV	m/s ² ; m/s ^{1.75}		ISO <i>W_k, W_d</i> ; BS 6472 <i>W_b, W_d</i>	Vertical/horizontal
Sweden	Maximum velocity	mm/s	1s	SS 460 48 61/ W _m	Vertical
Netherlands	V _{max}	-	0.125s	DIN 4150 /SBR-B	Vertical/horizontal
Poland	V _{d,max}	-	0.125s	ISO W _k , W _d	Vertical/horizontal

Metrics used in the meta-analysis

Three metrics are chosen as reference metrics towards which all others are transformed:

- Vd_{max}: maximum vibration velocity level (fast-exponentially filtered maximum velocity over, say, a week), mostly according to DIN 4150 and SBR-B, but frequency weighted for different directions, according to ISO 2631-1
- RMS: average vibration velocity level (root-mean-square velocity over 24 hours) acceleration based, frequency weighted for different directions, according to ISO 2631-1
- *VDV*: vibration dose value (root-sum-quad acceleration over 24 hours), acceleration based, frequency weighted for different directions, according to ISO 2631-1

Exposure-response function *V_{d,max}* – annoyance (N=4490)

Annoyance from Railway Vibration

Parameter	Estimate	SE	p-value
β ₀ (intercept at median)	10.72	4.41	< 0.05
β_1 ($log_{10}V_{d,max,centered}$)	40.53	1.95	< 0.0001
σ^2_0 (between study)	126.73		
σ^2_1 (within study)	1528.14		
Covariance (b_0,b_1)	-1.20		
Explained variance	0.18		

Sleep labs at University of Gothenburg

Test design

3 experiments with different noise and vibration conditions

 59 subjects x 6 nights (1 habituation, 1 control, and 4 exposure)

 Sleep quality evaluated objectively using polysomnography and subjectively via questionnaires

Main results

- Exposure to freight noise and vibration resulted in self reported and objective sleep disturbance
- Number of trains found to influence sleep quality at certain levels of vibration
- Sleep disturbance was found to be related to vibration amplitude
- Exposure to vibration found to influence heart rate

Universitv of Salford

Good practice guide

- Guidance for assessing human response to railway vibration in steady state conditions
- Present best available data for annoyance, sleep disturbance and other factors

 Comparison of national limit levels with best available data

Timeline

May 2013

June 2013

Mid-Sept 2013 30th Sept 2013

International workshop, Salford, UK

ICA, Montreal IWRN, Sweden Final draft CargoVibes board

Comments welcome!

Summary

- Meta-analysis of existing field data has resulted in exposure-response relationships
- Sleep disturbance due to vibration assessed in laboratory tests
- Formal guidance for the evaluation of vibration to be provided in a good practice guide

Contact and further info

email: j.s.woodcock@salford.ac.uk

web: http://hub.salford.ac.uk/vteam/